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Abstract

In some plasma confinement systems (e.g., field-reversed configurations and

levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic

field. We consider the influence of the magnetic field perturbations on the structure of the

magnetic field in such systems and find that the effect of perturbations is quite different

from that in the systems with a substantial toroidal field. In particular, even infinitesimal

perturbations can, in principle, lead to large radial excursions of the field lines in FRCs

and levitated dipoles. Under such circumstances, particle drifts and particle collisions

may give rise to significant neoclassical transport. Introduction of a weak regular toroidal

magnetic field reduces radial excursions of the field lines and neoclassical transport.
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There exists a class of plasma confinement systems where the field lines of the

confining magnetic field are closed, but there is no toroidal magnetic field. The examples

include levitated dipoles (e.g., [1] and references therein) and field-reversed

configurations (FRC) (e.g., [2] and references therein). Diffuse pinches and inverse

pinches without axial magnetic field (e.g., [3, 4]) also belong to this class, provided they

are long enough not to be governed by end effects.

It turns out that the effect of magnetic field perturbations on the geometry of the

magnetic field lines in such systems has interesting features directly related to the

absence of the toroidal magnetic field. In particular, radial excursions of the perturbed

magnetic field lines can be large even for very small perturbations. In this brief

communication, we provide a set of equations describing this effect, discuss particle

trajectories and collision-induced neoclassical transport in the perturbed field, and

evaluate the magnitude of the toroidal magnetic field needed to substantially reduce the

transport.

We use coordinate frame defined by the unperturbed magnetic field: the poloidal

flux Φ, the distance l measured along the unperturbed field line from the equator (Fig.

1a), and the toroidal angle ϕ. The unperturbed field lines form closed curves in the

poloidal plane. We do not make any assumptions about the plasma beta, so that the

unperturbed field lines are determined by both the external currents and equilibrium (i.e.,

purely toroidal and axisymmetric)  plasma currents.

We decompose magnetic field perurbations over three mutually perpendicular

directions: the direction normal to the flux surface (“radial”), the direction tangential to

the flux surface and lying in the poloidal plane, and the toroidal direction. We denote
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these components by δ δ δB B Bn p t, , , respectively. In the linear (over δB) approximation,

the deviation of the field line from the initial one in the normal and toroidal directions can

be represented as:
d

dl
R B

d

dl

B

B Rn
tΦ

= =2
0

π δ
ϕ δ

;        (1)

The (small) variation of Φ and ϕ during one full turn in the poloidal direction is:

∆Φ = ∫2π δR B dln        (2)

∆ϕ
δ

= ∫ B dl

RB
t

0

              (3)

By marking successive intersections of the field line with the equatorial plane,

after every full turn in the poloidal direction, one obtains a puncture plot, which is quasi-

continuous because of the assumed smallness of perturbations. Dividing ∆Φ by ∆ϕ and

replacing finite differences by differentials, one gets an equation for this

(quasicontinuous) curve:

d

d

R B dl
B dl

RB

Fn

t

Φ
Φ

ϕ

π δ
δ

ϕ= ≡
∫
∫

2

0

( , )        (4)

The numerator and denominator of this equation are functions of Φ  and ϕ . Their

dependence on ϕ is periodic, with the period 2π.

The integration over l in (2) can be considered as a kind of a “projection”

operation. In other words, not all types of perturbations contribute to the wandering of the

field lines. In particular, one can show that ∆Φ  (as well as ∆ϕ) is identically zero if

perturbations are of an ideal MHD type, where the line-tying constraint is satisfied

exactly (i.e., δ ξB B= ∇ × ×  where ξξξξ is the displacement of a fluid element. This notion is
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in agreement with the general observation that, in the ideal MHD, perturbations cannot

change the topology of the field lines.

Two more examples: If a uniform axial magnetic field is imposed on the system

shown on Fig. 1a, ∆Φ is again zero, because the r.h.s. in Eq. (2) corresponds to the

magnetic flux of a uniform field through a closed toroidal surface (which flux is, of

course, zero). For the systems with the up-down symmetry (in the unperturbed state), the

condition ∆Φ=0 is satisfied if the perturbation is antisymmetric with respect to the

equatorial plane. This circumstance was noticed  and used in Ref. [5] to minimize a

negative effect of RF current drive on the plasma confinement in the RF-driven FRC. So,

not all types of magnetic perturbations cause radial wandering of the field lines.

Equation (4) is quite general in that it is not based on any assumptions about the

plasma beta. It is equally applicable to the levitated dipoles and FRCs. In the case of a

diffuse pinch, one has to introduce an axial coordinate ζ instead of ϕ, and understand by

Φ the flux per unit length of the pinch. The resulting equation equivalent to (4) then

becomes:

d

d
B

B dl

B dl
n

t

Φ
Φ

ς

δ

δ
=

∫
∫0( )       (5)

In this case, as the unperturbed field lines are just circles, only poloidally-symmetric part

of the perturbation contributes to displacements.

For a given unperturbed magnetic field, and for the known perturbations, the right

hand side of Eq. (4) is a known function. Integrating Eq. (4), one finds the puncture plot

and excursions of the field lines over the flux coordinate. Remarkably, these excursions

do not depend on the amplitude of perturbations, only on their spatial structure. In other
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words, if one multiplies both  δBn and δBt by the same constant factor, equations (4) and

(5) do not change.

In the most general case, by using the Fourier decomposition of the perturbations

over the toroidal angle, one can represent the numerator (denominator) of the r.h.s. of Eq.

(4) as C m S mm
m

m
( , ) ( , )( )cos ( )sin1 2

1

1 2

=

∞

∑ +Φ Φϕ ϕ , where subscript “1” (“2”) refers to the

numerator (denominator).  The coefficients C and S are determined by the radial structure

of the perturbation. If one toroidal mode (say, the mth mode) of the perturbation is

strongly dominant, one gets

F
C m S m

C m S m
m m

m m

( , )
( )cos ( )sin
( )cos ( )sin

( ) ( )

( ) ( )Φ
Φ Φ
Φ Φ

ϕ
ϕ ϕ
ϕ ϕ

=
+
+

1 1

2 2      (6)

Eq. (4) with F as in Eq. (6) may have singular points, where both numerator and

denominator turn zero. Assuming that those are simple zeros, one finds a chain of elliptic

and hyperbolic singular points, determining a string of islands (Fig. 1b). This may happen

when instabilities create non-axisymmetric perturbed currents within the  plasma. What is

different from "traditional" islands found in, e.g., tokamaks, is that the "thickness" of the

islands is determined now solely by the spatial structure of perturbation, not by its

amplitude. Note also that Fig. 1b depicts equatorial cross-section z=0 (not the poloidal

cross-section ϕ=const normally used in tokamak surface-of-section plots). If the

perturbation encompasses the whole plasma radius, the island thickness is of order of

plasma radius, even for very small perturbations; however, the number of transits (or,

equivalently, the field line length) required for a field-line to circulate around the island is

inversely proportional to the perturbation amplitude. Roughly speaking, for the field line
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to be displaced radially by the characteristic size h of order of a radial length-scale of

perturbations, the field line has to make a path

s h
B

B
~ 0

δ
     (7)

A special class of perturbations is a perturbation of the form of a uniform

magnetic field perpendicular to the axis of the system. [As we have already mentioned, a

uniform axial magnetic field does not contribute to the field line wandering.] We

consider its effect on the example of a long (L>>a) racetrack-shaped FRC (Fig. 2).

Assume that perturbing field is directed along the axis x, i.e.,

δ ϕ δ ϕB b B bn t= = −cos ; sin        ( 8 )

where b is the magnetic field strength of the perturbation.

In the L>>a case, the constancy of the plasma pressure along the field line,

combined with the condition of the radial equilibrium means that the magnetic field

strength on the outer and inner sections of some field line is the same. We shall mark the

unperturbed magnetic field strength by its magnitude at the outer part of FRC, i.e., we

specify the function B(re). The condition that the magnetic flux comprised between two

neighboring flux surfaces is constant, yields an equation (e.g., [2]):

r r ae i
2 2 2+ =        (9)

In the case of a long racetrack, one can neglect the contribution of the end regions

to the integrals in Eq. (3). Then, the integral over the field line is approximately equal to

contributions of the straight segments, whose length is approximately equal to the FRC

length L. Specifically,

R B dl Lb r rn e iδ ϕ∫ = −( )cos ,      (10)
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and

δ
ϕ

B dl

RB

Lb

B r r r
t

e i e0 0

1 1
= − +









∫

( )
sin      (11)

One obviously has

d

dr
B r r

e
e e

Φ
= 2 0π ( )       (12)

Eq. (4) then yields:

dr

d

r r

r r
re e i

e i
iϕ

ϕ= −
−
+

cot      (13)

where ri is related to re by Eq. (9). An elementary integration yields a family of puncture

plots:

r a r
C

e e− − =2 2

sinϕ
     (14)

The constant C satisfies inequalities: 0<C<a. A set of plots is shown on Fig. 2b. Note a

great degree of universality of this result: it does not depend on the details of the pressure

distribution over the flux surfaces.

Now we discuss possible effect of magnetic field perturbations on particle

confinement, which is determined by particle trajectories, not just by the magnetic field

line path. Two effects are of importance here: mirror reflection of the particles from the

zones of a strong field, and particle drifts. We make the further estimates for the levitated

dipole. Particles with a sufficiently large pitch angle experience mirror reflection from

the zone of a strong magnetic field inside the ring. These particles are bouncing along a

segment of a field line between the turning points. They do not cover the whole field line

and do not execute large radial excursions shown on Fig. 1b. Conversely, transit particles

would cover the whole field line and would suffer from large radial excursions.
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Consider now effects of particle drift. If the toroidal drift velocity vd is large, so

that toroidal displacement caused by this drift within one poloidal period of the particle

motion exceeds toroidal displacement ∆ϕ [Eq. (3)] caused by the presence of a perturbing

magnetic field, radial excursions of particles decrease compared to the global scale of the

system. The criterion for this to happen reads as

r

a

B

B
C >

δ

0

     (15)

where rC is the cyclotron radius of a particle. Clearly, this condition is most restrictive for

the electrons. Taking a=500 cm, Te~30 keV, and the magnetic field B0~1 T, on finds that

the relative value of perturbations must be small, δB/B0<10-4.

The transiting particle during one full circle of the poloidal motion gets displaced

in the flux coordinate by the amount ∆Φ determined by Eq. (2). At the same time, under

condition (15), it drifts in the toroidal direction by an angle

∆ϕ = ∫ v
v||

d dl

R
     (16)

Accordingly, an equation for the projection of the particle trajectory on the equatorial

plane will be (Cf. Eq. (4)):

d

d

R B dl
dl

R

n

d

Φ
ϕ

π δ
=

∫
∫

2
v
v||

     (17)

The denominator here does not depend on the toroidal angle; accordingly Eq. 17 implies,

for example, that field-errors with m = 1 produce a horizontal shift, δr, of the normally

circular drift orbits and those with m = 2 become elliptical , with the parameters of orbits

in both cases depending on the particle integrals of motion.
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Let’s evaluate radial excursions δr of transiting particles. First, we note that, in

the case of a levitated dipole, R~a, so that  δΦ~2πaB0δr. Then, we estimate vd as vT(rC/a),

and v|| as vT. With that, Eq. (17) yields for the global-scale perturbations (i.e., for

perturbations with a spatial scale ~a)

δ
δ

r a
m

a B

r BC

~
0

     (18)

Assuming that the magnetic field in the center of the ring is 10 T, one can evaluate the

number of transiting particles as ε~1/10. The time for one radial excursion is (under

condition (15)) ~ /a mrC Te
2 v  and, for plasma densities ~1014 cm-3,  is shorter than the

electron scattering time over the loss-cone angle, τ ε ν~ / e. Therefore, the corresponding

neoclassical electron thermal diffusivity is:

χ ε
δ
τ

ν
δ

~ ~
r a

m

a B

r Be
C

2 2

2
0

2







     (19)

The corresponding electron heat loss time would be ~ ( / ) / .m r B a Be C
2

0

2
ν δ( )  If the

inequality (15) holds by a 10-fold margin, i.e., the relative perturbation level is ~10-5, the

confinement time for large-scale error modes, m  = 1, turns out to be ~100 electron

scattering times. In order for the electron neoclassical thermal diffusivity to be the same

order as classical ion diffusivity, the field errors must be small, δB/B0 < 0.7m x 10-7.

[Estimate (19) corresponds to a so-called “banana” regime; for lower plasma

temperatures, when the scattering time becomes shorter than the excursion time,

τ < a mrC Te
2 / v , the “plateau” regime is realized, in which the thermal diffusivity becomes

independent of the collision frequency, χ ε δ~ ( / ) /r m a B r BC Te Cv 0

2( ) .]
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The presence of a radial electric field complicates the situation. Depending on its

sign, the EXB drift is directed oppositely to the gradB drift for at least one of the particle

species. As the EXB drift does not depend on particle energy, there would always exist a

group of particles in the velocity space for which these two drifts cancel each other (we

mean here toroidal drift averaged over a period of the poloidal motion). This leads to an

increase of the neoclassical transport compared to the estimate (19).

One more factor has to be taken into account for the case where perturbations are

created by a non-steady-state convection. If the characteristic correlation time is shorter

than the time within which an electron makes a full radial excursion, the fluctuating

nature of perturbations becomes important. This factor may both decrease the transport

and increase it (the latter would occur for the electron whose drift velocity resonates with

phase velocity of perturbations).

To mitigate effects of enhanced radial transport, one can add a weak regular

toroidal magnetic field to the system. We denote this field by Bt0. It does not depend on

the toroidal angle ϕ but may, generally speaking, depend on Φ and l. In order for this

field to have a significant effect, it must satisfy the condition

Bt0>>δB, (rC/a)B0     (20)

(the second of these two inequalities means that the toroidal velocity associated with the

particle motion along the field line would exceed the toroidal drift velocity). At the same

time, we do not want to make the system to become a more “traditional” confinement

system of the type of a spheromak or RFP where the toroidal and poloidal fields are of

the same order of magnitude. So, we assume that

Bt0<<B0.      (21)
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The latter inequality shows that, to the first order, one can still use Eq. (4) for

tracing the field lines, with the only difference being that now one has to put Bt0 instead

of δBt in the denominator. This yields:

d

d

R B dl
B dl

RB

n

t

Φ
ϕ

π δ
=

∫
∫

2

0

0

     (22)

In this case the radial wandering of the field line becomes smaller, of the order of aδB/Bto.

In summary: In the closed-field-lines confinement systems where only poloidal

magnetic field is present, the magnetic field structure is very sensitive to external

magnetic perturbations, unless condition ∆Φ=0 (see Eq. (2)) holds identically, as it does,

e.g., in the case of ideal MHD perturbations. In a more general case, even small

perturbations may cause large radial excursions of magnetic field lines. Particle drifts and

particle collisions cause neoclassical diffusion. This channel of radial transport can,

however, be reduced by reducing the amplitude of large-scale field errors or by

introducing relatively small regular toroidal magnetic field.

Work performed for U.S. DoE by UC LLNL under Contract W-7405-ENG-48

under contract W-7405-ENG-48 and by MIT and CU under contract DE-FG02-

91ER54109.
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Figure captions

Fig. 1 a) Field lines of an axisymmetric current ring. Shaded are cross-sections of

the conductor; R is the distance from the geometrical axis to a certain point on the

unperturbed flux surface. For a finite plasma beta, the unperturbed field lines may differ

substantially from those of a vacuum magnetic field. The coordinates l, Φ , ϕ  are

determined by the total unperturbed magnetic field (the one determined by the

combination of external currents and plasma currents). The dash-dotted vertical line is the

axis z. b) Puncture plot in the equatorial plane for a global (h~a) perturbation with

toroidal mode number m=3.

Fig.2 a) Schematic of the magnetic configuration of the racetrack-type FRC. The

field lines are straight everywhere except the end sections (shown in dashes). The

outermost line represents the separatrix, whose distance from the axis is denoted as a.

The dotted line represents a line where field reversal occurs. The distance of this line

from the axis is a/21/2. The parameters re  (ri)  represent the distance of the outer (inner,

w.r.t. the field reversal surface) part of some field line from the axis. b) A sketch of

puncture plots in the equatorial plane of FRC for the case where perturbation is a uniform

magnetic field directed along the axis x. By using Eq. (9), one can project this puncture

plot into the area of the reversed flux, r<a/21/2. The cross-section is enlarged by a factor 2

compared to the panel a.
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